- method of lagrange multipliers
- 拉格朗日乘子法
English-Chinese electron industry dictionary (英汉电子工程大词典). 2013.
English-Chinese electron industry dictionary (英汉电子工程大词典). 2013.
Lagrange multipliers — In mathematical optimization problems, the method of Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the extrema of a function of several variables subject to one or more constraints; it is the basic tool in… … Wikipedia
Lagrange multipliers on Banach spaces — In the field of calculus of variations in mathematics, the method of Lagrange multipliers on Banach spaces can be used to solve certain infinite dimensional constrained optimization problems. The method is a generalization of the classical method … Wikipedia
Constrained optimization and Lagrange multipliers — This tutorial presents an introduction to optimization problems that involve finding a maximum or a minimum value of an objective function f(x 1,x 2,ldots, x n) subject to a constraint of the form g(x 1,x 2,ldots, x n)=k.Maximum and… … Wikipedia
Lagrange multiplier — Figure 1: Find x and y to maximize f(x,y) subject to a constraint (shown in red) g(x,y) = c … Wikipedia
Joseph Louis Lagrange — Lagrange redirects here. For other uses, see Lagrange (disambiguation). Joseph Louis Lagrange Joseph Louis (Giuseppe Lodovico), comte de Lagrange … Wikipedia
Newton's method in optimization — A comparison of gradient descent (green) and Newton s method (red) for minimizing a function (with small step sizes). Newton s method uses curvature information to take a more direct route. In mathematics, Newton s method is an iterative method… … Wikipedia
Gauss pseudospectral method — The Gauss Pseudospectral Method (abbreviated GPM ) is a direct transcription method for discretizing a continuous optimal control problem into a nonlinear program (NLP). The Gauss pseudospectral method differs from several other pseudospectral… … Wikipedia
Constraint algorithm — In mechanics, a constraint algorithm is a method for satisfying constraints for bodies that obey Newton s equations of motion. There are three basic approaches to satisfying such constraints: choosing novel unconstrained coordinates ( internal… … Wikipedia
Chemical equilibrium — In a chemical reaction, chemical equilibrium is the state in which the concentrations of the reactants and products have not yet changed with time. It occurs only in reversible reactions, and not in irreversible reactions. Usually, this state… … Wikipedia
Karush–Kuhn–Tucker conditions — In mathematics, the Karush–Kuhn–Tucker (KKT) conditions (also known as the Kuhn–Tucker conditions) are necessary for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied. Allowing inequality… … Wikipedia
Principle of maximum entropy — This article is about the probability theoretic principle. For the classifier in machine learning, see maximum entropy classifier. For other uses, see maximum entropy (disambiguation). Bayesian statistics Theory Bayesian probability Probability… … Wikipedia